有限單元法,是一種有效解決數(shù)學問題的解題方法。其基礎是變分原理和加權余量法,其基本求解思想是把計算域劃分為有限個互不重疊的單元,在每個單元內(nèi),選擇一些合適的節(jié)點作為求解函數(shù)的插值點,將微分方程中的變量改寫成由各變量或其導數(shù)的節(jié)點值與所選用的插值函數(shù)組成的線性表達式 ,借助于變分原理或加權余量法,將微分方程離散求解。采用不同的權函數(shù)和插值函數(shù)形式,便構成不同的有限元方法。有限元方法最早應用于結構力學,后來隨著計算機的發(fā)展慢慢用于流體力學的數(shù)值模擬。
在有限元方法中,把計算域離散剖分為有限個互不重疊且相互連接的單元,在每個單元內(nèi)選擇基函數(shù),用單元基函數(shù)的線形組合來逼近單元中的真解,整個計算域上總體的基函數(shù)可以看為由每個單元基函數(shù)組成的,則整個計算域內(nèi)的解可以看作是由所有單元上的近似解構成。在河道數(shù)值模擬中,常見的有限元計算方法是由變分法和加權余量法發(fā)展而來的里茲法和伽遼金法、最小二乘法等。根據(jù)所采用的權函數(shù)和插值函數(shù)的不同,有限元方法也分為多種計算格式。從權函數(shù)的選擇來說,有配置法、矩量法、最小二乘法和伽遼金法,從計算單元網(wǎng)格的形狀來劃分,有三角形網(wǎng)格、四邊形網(wǎng)格和多邊形 網(wǎng)格,從插值函數(shù)的精度來劃分,又分為線性插值函數(shù)和高次插值函數(shù)等。